APOBEC3G Inhibits DNA Strand Transfer during HIV-1 Reverse Transcription
نویسندگان
چکیده
منابع مشابه
APOBEC3G Inhibits Elongation of HIV-1 Reverse Transcripts
APOBEC3G (A3G) is a host cytidine deaminase that, in the absence of Vif, restricts HIV-1 replication and reduces the amount of viral DNA that accumulates in cells. Initial studies determined that A3G induces extensive mutation of nascent HIV-1 cDNA during reverse transcription. It has been proposed that this triggers the degradation of the viral DNA, but there is now mounting evidence that this...
متن کاملDeaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G
APOBEC3G (A3G), a host protein that inhibits HIV-1 reverse transcription and replication in the absence of Vif, displays cytidine deaminase and single-stranded (ss) nucleic acid binding activities. HIV-1 nucleocapsid protein (NC) also binds nucleic acids and has a unique property, nucleic acid chaperone activity, which is crucial for efficient reverse transcription. Here we report the interplay...
متن کاملA mechanism for plus-strand transfer enhancement by the HIV-1 nucleocapsid protein during reverse transcription.
The HIV-1 nucleocapsid protein (NC) functions as a nucleic acid chaperone during the plus-strand transfer step in reverse transcription by facilitating annealing of the primer binding site (PBS) sequence in the short plus-strand strong-stop DNA fragment [(+) SSDNA] to a complementary site located near the 3' end of the minus-strand DNA [(-) PBS DNA]. To investigate the mechanism by which NC per...
متن کاملThe first strand transfer during HIV-1 reverse transcription can occur either intramolecularly or intermolecularly.
Reverse transcription is a complicated process that involves at least two cDNA transfer reactions to produce a full-length copy DNA of the retroviral RNA genome. Because one retrovirus particle contains two identical genomic RNA molecules, the transfers can occur in an intramolecular or intermolecular manner. The mechanism of the first transfer step (minus-strand strong-stop cDNA transfer) has ...
متن کاملPremature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis.
Reverse transcription of retroviral genomes starts near the 5' end of the viral RNA by use of an associated tRNA primer. According to the current model of reverse transcription, the initial cDNA product, termed minus-strand strong-stop DNA, 'jumps' to a repeated sequence (R region) at the 3' end of the RNA template. The human retroviruses have relatively long R regions (97-247 nucleotides) when...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2007
ISSN: 0021-9258
DOI: 10.1074/jbc.m703423200